Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytother Res ; 38(3): 1462-1477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246696

RESUMO

Reducing mitochondrial oxidative stress has become an important strategy to prevent neuronal death in ischemic stroke. Previous studies have shown that 20(R)-ginsenoside Rg3 can significantly improve behavioral abnormalities, reduce infarct size, and decrease the number of apoptotic neurons in cerebral ischemia/reperfusion injury rats. However, it remains unclear whether 20(R)-ginsenoside Rg3 can inhibit mitochondrial oxidative stress in ischemic stroke and the potential molecular mechanism. In this study, we found that 20(R)-ginsenoside Rg3 notably inhibited mitochondrial oxidative stress in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and maintained the stability of mitochondrial structure and function. Treatment with 20(R)-ginsenoside Rg3 also decreased the levels of mitochondrial fission proteins (Drp1 and Fis1) and increased the levels of fusion proteins (Opa1, Mfn1, and Mfn2) in MCAO/R rats. Furthermore, we found that 20(R)-ginsenoside Rg3 promoted nuclear aggregation of nuclear factor erythroid2-related factor 2 (Nrf2) but did not affect Kelch-like ECH-associated protein-1 (Keap1), resulting in the downstream expression of antioxidants. In in vitro oxygen-glucose deprivation/reperfusion stroke models, the results of PC12 cells treated with 20(R)-ginsenoside Rg3 were consistent with animal experiments. After transfection with Nrf2 short interfering RNA (siRNA), the protective effect of 20(R)-ginsenoside Rg3 on PC12 cells was reversed. In conclusion, the inhibition of mitochondrial oxidative stress plays a vital position in the anti-cerebral ischemia-reperfusion injury of 20(R)-ginsenoside Rg3, and its neuroprotective mechanism is related to the activation of the nuclear factor erythroid2-related factor 2/heme oxygenase 1 signaling pathway.


Assuntos
Isquemia Encefálica , Ginsenosídeos , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Traumatismo por Reperfusão/prevenção & controle , Infarto da Artéria Cerebral Média
2.
Exp Neurol ; 374: 114697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266765

RESUMO

BACKGROUND: Stroke is one of the leading causes of death and long-term disability worldwide. Previous studies have found that corilagin has antioxidant, anti-inflammatory, anti-atherosclerotic and other pharmacological activities and has a protective effect against cardiac and cerebrovascular injury. OBJECTIVES: The aim of this study was to investigate the protective effects of corilagin against ischemic stroke and to elucidate the underlying molecular mechanisms using network pharmacology, molecular docking, and animal and cell experiments. METHODS: We investigated the potential of corilagin to ameliorate cerebral ischemia-reperfusion injury using in vivo rat middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) models. RESULTS: Our results suggest that corilagin may exert its anti-ischemic stroke effect by interacting with 92 key targets, including apoptosis-associated proteins (Bcl-2, Bax, caspase-3) and PI3K/Akt signaling pathway-related proteins. In vivo and in vitro experiments showed that corilagin treatment improved neurological deficits, attenuated cerebral infarct volume, and mitigated neuronal damage in MCAO/R rats. Corilagin treatment also enhanced the survival of PC12 cells exposed to OGD/R, reduced the rate of LDH leakage, inhibited cell apoptosis, and activated the PI3K/Akt signaling pathway. Importantly, the effects of corilagin on the PI3K/Akt signaling pathway and apoptosis-associated proteins were reversed by the PI3K-specific inhibitor LY294002. CONCLUSIONS: These results indicate that the molecular mechanism of the anti-ischemic effect of corilagin involves inhibiting neuronal apoptosis and activating the PI3K/Akt signaling pathway. These findings provide a theoretical and experimental basis for the further development and application of corilagin as a potential anti-ischemic stroke agent.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Glucosídeos , Taninos Hidrolisáveis , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Apoptose
3.
Antiviral Res ; 214: 105607, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088168

RESUMO

Zika virus (ZIKV) infection is associated with the birth defect microcephaly and Guillain-Barré syndrome in adults. There is no approved vaccine or specific antiviral agent against ZIKV. ZFD-10, a novel structural skeleton of 1H-pyridazino[4,5-b]indol-4(5H)-one, was firstly synthesized and discovered to be a potent anti-ZIKV inhibitor with very low cytotoxicity. ZFD-10's anti-ZIKV potency is independent of cell lines and ZFD-10 mainly targets the post-entry stages of ZIKV life cycle. Time-of-addition and time-of-withdrawal assays showed that 10 µM ZFD-10 displayed the ability to decrease mainly at the RNA level and weakly the viral progeny particle load. Furthermore, ZFD-10 could protect ZIKV NS5 from thermal unfolding and aggregation and increase the Tagg value of ZIKV NS5 protein from 44.6 to 49.3 °C, while ZFD-10 dose-dependently inhibits ZIKV NS5 RdRp activity using in vitro RNA polymerase assays. Molecular docking study suggests that ZFD-10 affects RdRp enzymatic function through interfering with the fingers and thumb subdomains. These results supported that ZFD-10's cell-based anti-ZIKV activity is related to its anti-RdRp activity of ZIKV NS5. The in vivo anti-ZIKV study shows that the middle-dose (4.77 mg/kg/d) of ZFD-10 protected mice from ZIKV infection and the viral loads of the blood, liver, kidney and brain in the middle-dose and high-dose (9.54 mg/kg/d) were significantly reduced compared to those of the ZIKV control. These results confirm that ZFD-10 has a certain antiviral effect against ZIKV infection in vivo.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Infecção por Zika virus/tratamento farmacológico , Simulação de Acoplamento Molecular , Ligação Proteica , Antivirais/farmacologia , Antivirais/metabolismo , Proteínas não Estruturais Virais/genética
4.
J Med Virol ; 95(2): e28483, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36625392

RESUMO

Zika Virus (ZIKV) infection is a global threat. Other than the congenital neurological disorders it causes, ZIKV infection has been reported to induce cardiac complications. However, the precise treatment plans are unclear. Thus, illustrating the pathogenic mechanism of ZIKV in the heart is critical to providing effective prevention and treatment of ZIKV infection. The mechanism of autophagy has been reported recently in Dengue virus infection. Whether or not autophagy participates in ZIKV infection and its role remains unrevealed. This study successfully established the in vitro cardiomyocytes and in vivo mouse models of ZIKV infection to investigate the involvement of autophagy in ZIKV infection. The results showed that ZIKV infection is both time and gradient-dependent. The key autophagy protein, LC3B, increased remarkably after ZIKV infection. Meanwhile, autophagic flux was detected by immunofluorescence. Applying autophagy inhibitors decreased the LC3B levels. Furthermore, the number of viral copies was quantified to evaluate the influence of autophagy during infection. We found that autophagy was actively involved in the ZIKV infection and the inhibition of autophagy could effectively reduce the viral copies, suggesting a potential intervention strategy for reducing ZIKV infection and the undesired complications caused by ZIKV.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Replicação Viral
5.
Front Chem ; 10: 1010547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311427

RESUMO

Zika virus (ZIKV), a mosquito-borne flavivirus, is a global health concern because of its association with severe neurological disorders such as neonatal microcephaly and adult Guillain-Barre syndrome. Although many efforts have been made to combat ZIKV infection, there is currently no approved vaccines or antiviral drugs available and there is an urgent need to develop effective anti-ZIKV agents. In this study, 26 acetylarylamine-S-DACOs derivatives were prepared, and eight of them were found to have inhibitory activity against Zika virus. Among these substances, 2-[(4-cyclohexyl-5-ethyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio]-N-(3,5-difluorophenyl)acetamide (4w) with the best anti-ZIKV activity was selected for in-depth study of antiviral activity and mechanism of action. Here, we discovered 4w targeted on the ZIKV NS5 RNA -dependent RNA polymerase (RdRp), which exhibited good in vitro antiviral activity without cell species specificity, both at the protein level and at the RNA level can significantly inhibit ZIKV replication. Preliminary molecular docking studies showed that 4w preferentially binds to the palm region of NS5A RdRp through hydrogen bonding with residues such as LYS468, PHE466, GLU465, and GLY467. ZIKV NS5 RdRp enzyme activity experiment showed that 4w could directly inhibit ZIKV RdRp activity with EC50 = 11.38 ± 0.51 µM. In antiviral activity studies, 4w was found to inhibit ZIKV RNA replication with EC50 = 6.87 ± 1.21 µM. ZIKV-induced plaque formation was inhibited with EC50 = 7.65 ± 0.31 µM. In conclusion, our study disclosed that acetylarylamine-S-DACOs is a new active scaffolds against ZIKV, among which compound 4w was proved to be a potent novel anti-ZIKV compound target ZIKV RdRp protein. These promising results provide a future prospective for the development of ZIKV RdRp inhibitors.

6.
Phytomedicine ; 107: 154450, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174454

RESUMO

BACKGROUND: Percutaneous coronary intervention (PCI) is an effective treatment for acute myocardial infarction, but the postoperative in-stent re-stenosis (ISR) remains a major risk factor that affects the prognosis of PCI. Clinically, drug-eluting stents (DES) are widely applied to prevent and treat ISR. However, only a few stent coating drugs are currently available for clinical use, including paclitaxel and rapamycin (sirolimus) and their derivatives. These stent-coated drugs have led to a decrease in restenosis rates, but the major adverse outcomes, such as delayed endothelial healing and increased in-stent thrombosis, seriously reduce their therapeutic effects. PURPOSE: Herein, we explored the potential efficacy of Euonymine (Euo), an alkaloid extracted from Tripterygium Hypoglaucum (Levl) Hutch (THH, Lei gong Teng), for the prevention against ISR after PCI. STUDY DESIGN: Our study depicts the potential efficacy of Euo in treating ISR and explores its mechanism with in vitro and in vivo models. METHODS: Primary vascular smooth muscle cells (VSMCs) from the rabbit thoracic aorta were cultured, and the proliferation and migration of VSMCs were monitored. Apoptosis was measured by Transmission Electron Microscopy and TUNEL staining assay. Protein and gene levels were measured to explore the underlying molecular mechanisms. In vivo models of porcine coronary implantation and rabbit carotid balloon injury are used to validate the efficacy of Euo in inhibiting ISR after PCI. RESULTS: With an ox-LDL-injured cell model, we showed that Euo suppressed the proliferation and migration of the rabbit thoracic aorta primary VSMCs, while inducing their apoptosis. We next established a rabbit carotid balloon injury model in which the phosphorylation levels of PI3K and AKT1 (Ser473) as well as mTOR activity were significantly elevated compared to the sham-operated control. These activities were significantly attenuated by the Euo intervention. Additionally, the balloon angioplasty significantly increased the expression of Bcl-2, while decreased the expression of Bax and caspase-3. Euo intervention significantly increased the ratio of Bax/Bcl-2 and the level of caspase-3. Taken together, Euo may enhance the VSMCs contractile phenotype by modulating the PTEN/AKT/mTOR signaling pathway. Furthermore, with two in vivo models, the porcine coronary artery implantation model, and the rabbit carotid balloon injury model, we demonstrated that Euo-eluting stents indeed inhibited ISR after PCI. CONCLUSION: For the first time, this study delineates the potential efficacy of Euo, derived from Tripterygium Hypoglaucum (Levl) Hutch, in ameliorating ISR after PCI with two in vivo models. The phytochemical targets PTEN/AKT/mTOR signaling pathway to increase the contractile phenotype of VSMCs and exerts anti-proliferative, anti-migratory as well as pro-apoptotic effects, thereby inhibiting the ISR.


Assuntos
Reestenose Coronária , Intervenção Coronária Percutânea , Animais , Caspase 3 , Constrição Patológica/complicações , Angiografia Coronária/efeitos adversos , Reestenose Coronária/tratamento farmacológico , Reestenose Coronária/etiologia , Músculo Liso Vascular , Paclitaxel , Intervenção Coronária Percutânea/efeitos adversos , Fenótipo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Coelhos , Fatores de Risco , Transdução de Sinais , Sirolimo , Suínos , Serina-Treonina Quinases TOR , Resultado do Tratamento , Proteína X Associada a bcl-2
7.
Oxid Med Cell Longev ; 2022: 9299574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498130

RESUMO

Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/ß-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.


Assuntos
Ginsenosídeos , Panax notoginseng , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fosfatidilinositol 3-Quinases
8.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268674

RESUMO

MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNAs. Recent research has proven that miRNAs play an essential role in the occurrence and development of ischemic stroke. Our previous studies confirmed that 20(R)-ginsenosideRg3 [20(R)-Rg3] exerts beneficial effects on cerebral ischemia-reperfusion injury (CIRI), but its molecular mechanism has not been elucidated. In this study, we used high-throughput sequencing to investigate the differentially expressed miRNA and mRNA expression profiles of 20(R)-Rg3 preconditioning to ameliorate CIRI injury in rats and to reveal its potential neuroprotective molecular mechanism. The results show that 20(R)-Rg3 alleviated neurobehavioral dysfunction in MCAO/R-treated rats. Among these mRNAs, 953 mRNAs were significantly upregulated and 2602 mRNAs were downregulated in the model group versus the sham group, whereas 437 mRNAs were significantly upregulated and 35 mRNAs were downregulated in the 20(R)-Rg3 group in contrast with those in the model group. Meanwhile, the expression profile of the miRNAs showed that a total of 283 differentially expressed miRNAs were identified, of which 142 miRNAs were significantly upregulated and 141 miRNAs were downregulated in the model group compared with the sham group, whereas 34 miRNAs were differentially expressed in the 20(R)-Rg3 treatment group compared with the model group, with 28 miRNAs being significantly upregulated and six miRNAs being significantly downregulated. Furthermore, 415 (391 upregulated and 24 downregulated) differentially expressed mRNAs and 22 (17 upregulated and 5 downregulated) differentially expressed miRNAs were identified to be related to 20(R)-Rg3's neuroprotective effect on stroke recovery. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that 20(R)-Rg3 could modulate multiple signaling pathways related to these differential miRNAs, such as the cGMP-PKG, cAMP and MAPK signaling pathways. This study provides new insights into the protective mechanism of 20(R)-Rg3 against CIRI, and the mechanism may be partly associated with the regulation of brain miRNA expression and its target signaling pathways.


Assuntos
Ginsenosídeos
9.
Oxid Med Cell Longev ; 2022: 2152746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222793

RESUMO

Geraniin, a polyphenol isolated from Phyllanthus amarus, possesses extensive biological and pharmaceutical activities. In this study, we investigated the protective effect against cerebral ischemia/reperfusion (I/R) injury of geraniin and explored its potential mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to simulate cerebral I/R injury in vivo, and oxygen-glucose deprivation/reoxygenation (OGD/R) was applied to establish an in vitro model of cerebral I/R injury. In this study, we performed TTC and HE staining and adopted a neurological score method to evaluate the neuroprotective effect of geraniin in vivo and used the CCK-8 assay to assess this effect in vitro. Indices of reactive oxidation capacity were measured in vivo and in vitro to verify the antioxidant capacity of geraniin. TUNEL staining and flow cytometry were applied to measure the apoptosis rate, and Western blotting was performed to assess the expression of apoptosis-related proteins. Finally, the expression of Nrf2 and HO-1 was evaluated in vivo and in vitro by Western blotting. Geraniin significantly reduced the infarct volume, decreased neurological deficit scores, alleviated pathological changes in neurons, and increased the cell survival rate. Geraniin increased the activity of superoxide dismutase (SOD) and decreased the activity of lactate dehydrogenase (LDH) and the contents of malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) in vivo and in vitro. In addition, geraniin significantly reduced the apoptosis. Furthermore, geraniin also evidently increased Nrf2 (total and nuclear) and HO-1 protein expression in vivo and in vitro. Collectively, these results imply that geraniin may exert a protective effect against cerebral I/R injury by suppressing oxidative stress and neuronal apoptosis. The mechanism underlying the protective effect of geraniin is associated with activation of the Nrf2/HO-1 pathway. Our results indicate that geraniin may be a potential drug candidate for the treatment of ischemic stroke.


Assuntos
Apoptose/efeitos dos fármacos , Glucosídeos/uso terapêutico , Heme Oxigenase (Desciclizante)/metabolismo , Taninos Hidrolisáveis/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Isquemia Encefálica/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos
10.
J Integr Neurosci ; 21(1): 16, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164452

RESUMO

This study was aimed at investigating the differentially expressions of long noncoding RNAs (lncRNAs) and mRNAs in the brains of a middle cerebral artery occlusion/reperfusion (MCAO/R) group and a MCAO/R + 20(R)-Rg3 group. Biological enrichment analysis was performed, and a lncRNA-mRNA coexpression network was constructed, to reveal the targets and pathways of 20(R)-Rg3 involved in the regulation of cerebral ischemia-reperfusion injury (CIRI). The RNA-seq high-throughput sequencing method was employed to detect differentially-expressed genes between the groups, which were verified by RT-PCR. Functional enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to explore the biological functions and relevant pathways. The coexpression network of the screened lncRNAs and mRNAs was built by using Cytoscape software. The results identified 77 upregulated lncRNAs, 162 downregulated lncRNAs, 66 upregulated mRNAs and 472 downregulated mRNAs in the MCAO/R + 20(R)-Rg3 group, compared with those in the MCAO/R group. GO enrichment analysis showed that the GO terms were mainly enriched in stimulation response, cellular response, and stress response. KEGG pathways were mainly related to the tumor necrosis factor (TNF), NF-κB, cytokine, and other receptor signaling pathways. In addition, the coexpression analysis between lncRNA and mRNA identified 314 nodes and 515 connections between 6 lncRNAs and 308 mRNAs, of which 511 were positive and 4 were negative. Among them, ENSRNOG-00000059555 was strongly correlated with AABR07001160.1. This study revealed multiple lncRNAs were involved in the neuroprotection of 20(R)-Rg3 against CIRI and thereby provided new insights into the use of 20(R)-Rg3 as a novel neuro protectant in ischemic stroke management.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ginsenosídeos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , RNA Longo não Codificante , RNA Mensageiro , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Ginsenosídeos/administração & dosagem , Masculino , Fármacos Neuroprotetores/administração & dosagem , RNA Longo não Codificante/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
11.
J Nat Med ; 76(2): 389-401, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064897

RESUMO

Corilagin, a natural polyphenol compound isolated from Phyllanthus urinaria L., exerts various pharmacological effects, such as antihyperglycemic, antitumor, and antioxidative stress properties, but the mechanisms underlying the antiatherosclerotic effects of corilagin have not been entirely elucidated. In the present study, we investigated the antiatherosclerotic effects of corilagin using a high-fat diet (HFD)-induced atherosclerotic rabbit model and ox-LDL-induced vascular smooth muscle cells (VSMCs) and explored the underlying molecular mechanisms. The serum lipid levels were measured through an enzymatic colorimetric assay. A histological analysis of rabbit aortas was performed after hematoxylin-eosin and oil red O staining. The proliferation of ox-LDL-induced VSMCs was detected using MTT assays, and the migration of cells was determined by wound scratch assays. In addition, the mRNA and protein expression levels of lectin-like ox-LDL receptor-1 (LOX-1), myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assays. Our results indicate that corilagin significantly reduced the serum levels of TC, TG and LDL-C, increased the HDL-C levels, decreased the intimal thickening in the thoracic aorta, and reduced the formation of foam cells in an HFD-induced rabbit atherosclerosis model. Moreover, corilagin suppressed the proliferation and migration of ox-LDL-induced VSMCs and reduced LOX-1, MyD88, NF-κB, MCP-1, and TNF-α mRNA and protein expression in vivo and in vitro. These data demonstrate that corilagin exerts antiatherosclerotic effects in vivo and in vitro and that the mechanisms may be closely associated with downregulation of the LOX-1/MyD88/NF-κB pathway.


Assuntos
Aterosclerose/tratamento farmacológico , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Coelhos , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
12.
Burns ; 48(3): 639-648, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34716043

RESUMO

Pomegranate peel extract (PPE), a polyphenolic compound derived from pomegranate, has been widely concerned for its anti-oxidant, anti-inflammatory, and bacteriostatic effects. The potential therapeutic effect of PPE on burn injury was investigated, and its possible mechanisms were explored. Minipigs with second-degree burn were treated with PPE, Jing Wan Hong, and silver sulfadiazine. Hematoxylin-eosin (HE) staining was performed to detect burn severity, and then biological tissues were biopsied on days 0, 7, 14, 21, and 28 after administration. Immunohistochemistry, western blot, and real-time polymerase chain reaction (RT-PCR) were used to detect the protein and mRNA expression levels of VEGF-A and TGF-ß1 in skin tissues after treatment with PPE. Furthermore, the skin wound healing at different time points was monitored by macroscopic observation. HE showed that after 28-day PPE treatment, the morphology of the skin tissue showed a significant improvement. Macroscopic data monitoring indicated that the decrustation and fur growing time was shortened. Meanwhile, the rate of wound healing increased after PPE treatment. The combination of immunohistochemistry, western blotting, and RT-PCR showed that after PPE treatment, expression of VEGF-A and TGF-ß1 increased sharply on day 7, maintaining a high level until day 14, showing a downward trend on day 21, and approaching normal levels on day 28. However, in the model group, the protein and mRNA expression levels of VEGF-A and TGF-ß1 increased on day 28 after burn injury, which was a slow process. Results indicated that compared with the model group, the peak expression level of VEGF-A and TGF-ß1 was earlier, which was consistent with decrustation, shortening of fur growing time, and improvement of wound healing rate in minipig second-degree burn model. PPE showed a significant promoting effect on minipig second-degree burn model, which might be associated with the upregulation of the protein and gene expression levels of VEGF-A and TGF-ß1.


Assuntos
Queimaduras , Punica granatum , Lesões dos Tecidos Moles , Animais , Queimaduras/patologia , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro , Suínos , Porco Miniatura/genética , Porco Miniatura/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização
13.
Chin Med ; 16(1): 45, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147112

RESUMO

BACKGROUND: Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a traditional Chinese medicine that has been used therapeutically for cardiovascular diseases, inflammatory diseases and traumatic injuries as well as for external and internal bleeding due to injury. Ginsenoside Rb1, a crucial monomeric active constituent extracted from P. notoginseng, has attracted widespread attention because of its potential anti-inflammatory, bacteriostatic, and cell growth-promoting effects. In this study, the therapeutic effects of ginsenoside Rb1 on second-degree burn in rats and the potential underlying mechanisms were explored. METHODS: A rat model of second-degree burn injury was established, and skin wound healing was monitored at different time points after ginsenoside Rb1 treatment. HE staining was performed to identify burn severity, and biological tissues were biopsied on days 0, 7, 14, and 24 after treatment. Skin wound healing at different time points was monitored by macroscopic observation. Furthermore, IHC, WB, and RT-PCR were utilized to determine the protein and mRNA expression levels of PDGF-BB, PDGFR-ß, and FGF-2 in wound tissues after treatment. RESULTS: HE staining showed that after 24 days of ginsenoside Rb1 treatment, skin tissue morphology was significant improved. Macroscopic observation demonstrated that in ginsenoside Rb1-treated rats, the scab removal time and fur growth time were decreased, and the wound healing rate was increased. Collectively, the results of IHC, WB and RT-PCR showed that PDGF-BB, PDGFR-ß, and FGF-2 expressions peaked earlier in ginsenoside Rb1-treated rats than in model rats, consistent with the macroscopic observations. CONCLUSION: Collectively, these findings  indicated that ginsenoside Rb1 promotes burn wound healing via a mechanism possibly associated with upregulation of FGF-2/PDGF-BB/PDGFR-ß gene and protein expressions.

14.
Eur J Pharmacol ; 906: 174200, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34062170

RESUMO

Corilagin is a polyphenol has been identified anti-inflammatory properties. However, the anti-atherosclerotic effects of corilagin are not well understood. Here, we evaluated the anti-atherosclerotic effects and the underlying mechanisms of corilagin. We also verified whether corilagin can reverse atherosclerosis by regulating matrix metalloproteinase (MMP)-1, -2, and -9 in vitro and in vivo. An atherosclerosis model was established by feeding minipigs a high-fat diet combined with balloon injury, and the effects of different concentrations of corilagin on common carotid artery atherosclerosis in minipigs were monitored. Murine RAW264.7 macrophages were cultured and induced with oxidized low-density lipoprotein; fluorescence microscopy revealed the nuclear translocation of NF-κB. Furthermore, MMP-1, -2, and -9 expression in common carotid artery plaques and cellular models was detected by immunohistochemistry, western blotting, and RT-PCR. The pathological results suggested that the vascular intima of the model control group was significantly thickened, a large amount of collagen fibers was deposited, endothelial cells were damaged and detached, and plaque and foam cell formation occurred to varying degrees on the arterial wall, with lipid deposition. Corilagin treatment significantly reduced the degree of injury in the common carotid artery and decreased the number of lipid plaques and foam cells. Additionally, corilagin downregulated MMP-1, -2, and -9 expression in the common carotid artery plaques and cellular model. Moreover, corilagin significantly inhibited NF-κB nuclear translocation in vitro. Overall, corilagin exerted substantial therapeutic effects on experimental atherosclerotic minipigs via the downregulation of MMP-1, -2, and -9 expression.


Assuntos
Aterosclerose/tratamento farmacológico , Artéria Carótida Primitiva/patologia , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Glucosídeos/uso terapêutico , Humanos , Taninos Hidrolisáveis/uso terapêutico , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Camundongos , Células RAW 264.7 , Suínos , Porco Miniatura
15.
Analyst ; 146(10): 3280-3288, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33999056

RESUMO

Acoustofluidic platforms for cell manipulation benefit from being contactless and label-free at potentially low cost. Particle concentration in a droplet relies on augmenting spatial asymmetry in the acoustic field, which is difficult to reproduce reliably. Etching periodic patterns into a chip to create acoustic band gaps is an attractive approach to spatially modify the acoustic field. However, the sensitivity of acoustic band structures to geometrical tolerances requires the use of costly microfabrication processes. In this work, we demonstrate particle concentration across a range of periodic structure patterns fabricated with a laser-cutting tool, suitable for low-cost and low-volume rapid prototyping. The relaxation on precision is underscored by experimental results of equally efficient particle concentration outside band gaps and even in their absence, allowing operation over a range of frequencies independent of acoustic band gaps. These results are significant by indicating the potential of extending the proposed method from the microscale (e.g. tumor cells) to the nanoscale (e.g. bacteria) by scaling up the frequency without being limited by fabrication capabilities. We demonstrate the device's high degree of biocompatibility to illustrate the method's applicability in the biomedical field for applications such as basic biochemical analysis and in vitro diagnosis.


Assuntos
Acústica , Nanopartículas , Lasers , Microtecnologia
16.
Pharmacol Rep ; 71(6): 1160-1167, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31675670

RESUMO

BACKGROUND: Hepatic insulin resistance can be induced by excess dietary intake of saturated fat. Ginsenoside Rg1 (GRg1), the major active ginsenoside enriched in tonic food ginseng, was reported to help alleviate liver diseases. In the present study, GRg1 was evaluated for its impact on palmitic acid (PA)-induced hepatic insulin resistance model in vitro. METHODS: Insulin resistance in HepG2 cells was induced by 0.5 mM PA exposure for 24 h and then the effect of GRg1 on cellular glucose consumption was measured. Expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase) were analyzed by Western blot and quantitative real-time polymerase chain reaction. Activation of protein kinases and transcript factor was analyzed by measuring protein phosphorylation. The influence of GRg1 on reactive oxygen species (ROS) production in HepG2 was also examined. RESULTS: GRg1 reversed PA-induced decrease in glucose consumption of HepG2 cells by downregulating gluconeogenesis genes G6pase and PEPCK. GRg1 increased Akt activation but inhibited JNK activation in PA-challenged HepG2 cells. Cellular ROS level was elevated in insulin-resistant HepG2 cells but was reduced by GRg1. CONCLUSIONS: Together these findings indicate that GRg1 protects against hepatic insulin resistance via preserving insulin signaling sensitivity and is a promising alternative medicine.


Assuntos
Ginsenosídeos/farmacologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , MAP Quinase Quinase 4/efeitos dos fármacos , Ácido Palmítico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
J Nat Med ; 73(1): 262-272, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30194656

RESUMO

Abnormal osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) has been correlated with the pathogenesis of osteoporosis. Geraniin, a polyphenolic compound isolated from Phyllanthus amarus, is effective in preventing osteoporosis, but the mechanisms of action of geraniin and the impact of osteoporotic condition on drug action are not known. In this study we compared the proliferation and osteoblastic differentiation potential of BMSCs from normal rats with that from osteoporotic rats, and examined the responses of both BMSCs to geraniin in parallel. BMSCs of rats subjected to ovariectomy or sham operation were isolated and treated with geraniin. Cell proliferation was measured by CCK-8 assay. Osteoblastic differentiation was quantified by Alizarin Red S staining and alkaline phosphatase assay. Nuclear translocation of ß-catenin was monitored by immunofluorescent staining. Expression of ß-catenin was determined by Western blot and quantitative real-time polymerase chain reaction. Results showed that the proliferation and osteoblast formation of osteoporotic BMSCs decreased in comparison to that of normal BMSCs. Geraniin enhanced proliferation and osteoblastic differentiation of both BMSCs, but the responses of osteoporotic BMSCs to geraniin were less than those of normal BMSCs. Expression and nuclear accumulation of ß-catenin in osteoporotic BMSCs were found to be diminished. Geraniin increased nuclear translocation and expression of ß-catenin in both BMSCs. This study associated the osteogenic effect of geraniin to activation of Wnt/ß-catenin signaling, and provided rationale for pharmacological investigation of geraniin in osteoporosis prevention and treatment.


Assuntos
Glucosídeos/uso terapêutico , Taninos Hidrolisáveis/uso terapêutico , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , beta Catenina/metabolismo , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Ratos
18.
Phytomedicine ; 42: 66-74, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655699

RESUMO

BACKGROUND: Scutellarin is the major constituent responsible for the clinical benefits of Erigeron breviscapus (Vant.) Hand.-Mazz which finds a long history of ethnopharmacological use in Traditional Chinese Medicine. Scutellarin as a pure compound is now under investigation for its protections against various tissue injuries. PURPOSE: This study aims to examine the effects of scutellarin on oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage, and then to evaluate the therapeutic efficacy of scutellarin in preventing atherosclerosis in rats. METHODS: Radical scavenging ability of scutellarin was determined in vitro. Impact of scutellarin on endothelium-dependent relaxation (EDR) of rabbit thoracic aortic rings upon 1, 1-diphenyl-2-picrylhydrazyl (DPPH) challenge was measured. Influences of scutellarin pre-treatment on the levels of reactive oxygen species (ROS), activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase, and the expression of SOD1 and NADPH oxidase 4 (Nox4) in human umbilical vein endothelial cells (HUVECs) injured by H2O2 were examined. Anti-atherosclerotic effect of scutellarin was evaluated in rats fed with high fat diet (HFD). RESULTS: Scutellarin showed potent antioxidant activity in vitro. Pretreatment of scutellarin retained the EDR of rabbit thoracic aortic rings damaged by DPPH. In H2O2 injured-HUVECs the deleterious alterations in ROS levels and antioxidant enzymes activity were reversed by scutellarin and the mRNA and protein expression of SOD1 and Nox4 were restored also. Oral administration of scutellarin dose-dependently ameliorated hyperlipidemia in HFD-fed rats and alleviated oxidative stress in rat serum, mimicking the effects of reference drug atorvastatin. CONCLUSION: Scutellarin protects against oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage in vitro and prevents atherosclerosis in vivo through antioxidation. The results rationalize further investigation into the clinical use of scutellarin in cardiovascular diseases.


Assuntos
Antioxidantes/farmacologia , Apigenina/farmacologia , Aterosclerose/prevenção & controle , Endotélio Vascular/fisiopatologia , Glucuronatos/farmacologia , Animais , Antioxidantes/metabolismo , Apigenina/administração & dosagem , Aterosclerose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Feminino , Glucuronatos/administração & dosagem , Glutationa Peroxidase/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/farmacologia , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Coelhos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
Biomed Pharmacother ; 99: 319-324, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29353207

RESUMO

Geraniin is an ellagitannin isolated from Phyllanthus amarus and has a wide range of bioactivities. Our previous study demonstrated that geraniin could alleviate osteoporosis by accelerating bone formation, but the mechanism remains unclear. This study aimed to elucidate the molecular mechanisms by which geraniin promotes osteoblast proliferation and differentiation in vitro. Primary rat bone marrow-derived mesenchymal stem cells were separated and divided into sham operated (Sham) group, Sham treated with geraniin (Sham + GE) group, ovariectomized (OVX) group, OVX treated with geraniin (OVX + GE) group, OVX treated with osteogenic medium (OVX + OM) group, OVX treated with Wnt inhibitor (OVX + WI) group, and OVX treated with Wnt inhibitor and geraniin (OVX + W I + GE) group. Following bilateral ovariectomy, the expression of ß-catenin, frizzled2, LRP6, TCF4, LEF1, c-myc, cyclin D1, Runx2 and osterix significantly reduced, while the expression of axin2 significantly increased (P < 0.05). Geraniin enhanced the expression of ß-catenin, frizzled2, LRP6, TCF4, LEF1, c-myc, cyclin D1, Runx2 and osterix, while inhibited the expression of axin2 (P < 0.05). Wnt inhibitor significantly weakened geraniin-induced Wnt/ß-catenin activation (P < 0.05). In conclusion, geraniin enhances the activation of Wnt/ß-catenin pathway, which may explain how it promotes osteoblast proliferation and differentiation.


Assuntos
Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Via de Sinalização Wnt/genética
20.
Braz. J. Pharm. Sci. (Online) ; 54(3): e17567, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-974397

RESUMO

In this study, the effects of geraniin on osteoprotegerin/receptor activator of nuclear factor-κB ligand(OPG/RANKL) in regulating the proliferation of osteoblasts and suppression of osteoclast-like cells (OLC) in OLC-osteoblast co-cultured system in vitro were investigated. Osteoblasts were cultured and identified with alkaline phosphatase (ALP), gomori stain, and mineralized nodule stain. OLCs were isolated from long bones of Sprague-Dawley (SD) rats and identified with tartrate-resistant acid phosphatase(TRAP) stain. Methyl thiazolyl tetrazolium assay was used to examine the proliferation of osteoblasts, and immunocytochemistry and in situ hybridization to analyze the expression OPG/RANKL in osteoblasts co-cultured with osteoclasts under the action of geraniin, respectively. Geraniin could regulate the proliferation of osteoblasts MC3T3-E1, decrease the number of OLC in OLC-osteoblast co-cultured system, and inhibit the bone resorption areas and resorption pits of OLC in vitro experiments. Geraniin could promote the mRNA and protein expression levels of OPG and suppress those of RANKL in osteoblasts. These results indicate that geraniin has a promoting effect on the proliferation of osteoblasts and an inhibitory effect on the osteoclastic bone-resorption through regulating OPG/RANKL signaling pathway in OLC-OB co-cultured system.


Assuntos
Animais , Masculino , Feminino , Ratos , Ligante RANK/classificação , Osteoprotegerina/efeitos adversos , Osteoblastos , Phyllanthus/classificação , Componentes Aéreos da Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...